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The formulation of problems of the flow in the clearance of a closed hydrodynamic journal bearing in the case of a “cylindrical” 
clearance is considered in the approximation of an incompressible or slightly compressible lubricant. The cylindrical shape of 
the clearance is determined by the fact that the fixed external surface shaped formed by the bearing is independent of the coordinate 
measured along the axis of the revolving shaft; hence the clearance is only a function of the angle variable. Bearings of a large 
(in the limit, infinite) relative length in the axial direction are of particular interest. The condition which, in the one-dimensional 
approximation, takes into account effects related to the outflow of lubricant from the open ends of the sections with (or without) 
a supply aperture is obtained. In special cases the well-known “supply aperture condition” and an integral equality, often called 
“the Elrod-Burgdorfer condition”, which are used to consider bearings of infinite length, follow from this condition. The problems 
considered are particularly interesting when solving variational problems of the optimization of hydrodynamic bearings in the 
one-dimensional approximation. 0 2003 Elsevier Science Ltd. All rights reserved. 

1. THE EQUATIONS AND CONDITIONS FOR A BEARING 
OF FINITE LENGTH 

Suppose the clearance h” is a function of only the angle variable 8 in fixed cylindrical coordinates z’, 
r”, 8, with the axial variable z” measured from the plane of symmetry of the journal bearing (Fig. l), 
i.e. h” = h”(8), the shaft rotates with angular velocity w“ in an anticlockwise direction, R" is its radius 
and 2B” is the length of the bearing. The superscript ’ denotes dimensional quantities. Ifx” = OR” is 
the coordinate, measured from the plane 8 = 0 along the surface of the shaft in the direction of its 
rotation,@’ is the pressure, T” is the temperature, p” = p”(p”, T”) is the density and @’ = o”(Y) is the 
viscosity of the lubricant, then, in the approximation of lubrication theory, the equation which determines 
the pressure distribution p” = p”(x”, z’) in the lubrication layer when T” = T$ = const (the Reynolds 
equation) has the form [l] 

To obtain this equation the following dimensionless variables and the parameter y are introduced. 

where hi, p$ and g = p”(T$) are the “characteristic” clearance, and the density and viscosity of the 
lubricant, respectively, taken as scales. 

For an incompressible lubricant p = 1, and for a slightly compressible lubricant p = 1 + 
(p -p*)yU”2/a”,2 for the corresponding choice of pz and&& w!re f/az2 = (dp”/$f’)To whenp” = pz and 
T” = Tg. Since a: is the isothermal velocity of sound, U /ai - M2 1s the square of the isothermal Mach 
number, determined by a$ and by the velocity of motion U” of the shaft surface. If the magnitude of 
A4’ is so small that (p -p,)yM2 -G 1, then p = 1 and Eq. (1.1) takes a form identical to the equation for 
an incompressible lubricant 

(h3p, )x + (h3p, jL - h, = 0 (1.2) 

Henceforth we will draw no distinction between incompressible and slightly compressible lubricants, 
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We will write the boundary conditions which the dimensionless pressure distribution&, z) must satisfy 
together with Eq. (1.2) for a specified periodic function h(x). We will start with the conditions for p 
and the flow rate to be periodic and continuous in the sections x = xd of a possible sudden change in 
the clearance 

p&z) = p(O,z), p,(L,z)= p,(O,z), - BC 2s B (1.3) 

[p(xd,z)I=O, [h;p,(x,,z)-h,l=O, -Bazc B (1.4) 

Here L = 274 [cp] = cp+ - cp-, and the - and + subscripts denote the values of parameters before and 
after the discontinuity in the direction in which 8 or x increase. 

If the radial “supply aperture” situated at x = xC is parallel to the axis of rotation, this section of the 
clearance will be considered as the surface of discontinuity of the discharge under continuous pressure. 
We will use the same approximation of lubrication theory to determine the flow entering the clearance 
or leaving it through the aperture. Suppose the width of the aperture A” be much smaller than its length 
in the radial direction I” = O(F) < B”. Neglecting the flow in the aperture in the direction of the z 
axis in view of the last inequality, we find that double the flow of lubricant through the aperture equals 
q” = q”(z) = Ao3p”(p”” -&)/lo , wherep’” is the external pressure above the aperture andp,” is the pressure 
in the clearance when x = x,. After changing to dimensionless quantities, we obtain q = K(p’ - p,), 
where K = A3/1, 1 = lo/R” and A = A”lhi, and consequently 

[p(x,,z)]=O, [hip,(x,,z)-h,l+K(p’-p,)=O, -Bszs B (1.5) 

This condition holds in this notation when X, = .Q i.e. when the coordinates of the aperture and the 
abrupt change in the clearance are identical. Using the arbitrariness of the choice of the origin of the 
circumferential coordinate, we will henceforth assume that the coordinates x, and xd differ from 0 and 
2lT. 

In the approximation of lubrication theory the pressure at the open ends of the bearing (where 
z = +-B) equals the ambient pressurep” in the medium around the shaft outside the bearing. In the 
general case (when there are special isalating diaphragms) it differs from the “external” pressure p’ 
above the aperture. Puttingp” = 0, i.e. measuring the pressure p with respect to pm we obtain 

p(x, B) = p(x,-B) = 0, 0 d x =s L (1.6) 



The formulation of problems of lubrication theory for journal bearings 759 

Taking into account the symmetry of the flow in the bearing with respect to the plane z = 0, it is 
more convenient to consider half of it: 0 d z s B. In this case the symmetry condition 

pz(x,O)=O, O<xSL (1.7) 

is used instead of the equalityp(x, -B) = 0. 

2. THE SOLUTION OF THE PROBLEM AND ITS PROPERTIES 
IN THE CASE OF LONG BEARINGS 

To investigate the properties of the solution of problem (1.2)-(1.7) re uired later, we will first represent q 
the pressure distribution as a sum 

P(% z> = POW + p1 k z) 

with the function p&) satisfying the equation 

(2.1) 

(h3Po,,,-h, = 0 (2.2) 

and conditions (1.3)-( 1 S) with p and p0 replaced, and the partial derivatives with respect to x replaced 
by total derivatives. The solution pO(x) of this one-dimensional problem, with the given piecewise- 
continuous periodic function h(x) exists and is unique for a supply aperture, and when there is no aperture 
the solution is determined apart from an arbitrary additive constant. The uniqueness of the solution 
when there is an aperture results from the conditions for p&) obtained from (1.3)-(1.9, which lead 
to the equality po(x,) = pe. 

Taking expression (2.1), Eq. (2.2) and the above-mentioned properties of the solution p&x) into 
account, as well as relations (1.2)-(1.7), the problem of determiningpI@, z) takes the form (f = h’) 

m,, ), + (fi,, )z = 0 (2.3) 

p,(L,z)=p](o,z), p,,(L,z)=p,,(O,z), [p](x,,z>l=o, [f~p,x(x~,z)l=o 

[pr(xc,z)l = 0, [.&~,~(~,,z)1- Kp,c = 0, 0 c z s B (2.4) 

p,(x, B) = -pa(x), p,,kO) = 0, 0 c x c L (2.5) 

Unlike the initial boundary-value problem for p(x, z), boundary-value problem (2.3)-(2.5) for 
p,(x, z) allows of a separation of variables. Doing this and substitutingpl(x, z) = X(x)2(z) into (2.3)-(2.5), 
we obtain the following equations for determining the functions X and 2 (the prime denotes a total 
derivative with respect to x and a dot above a symbol denotes a total derivative with respect to z) 

(fx’)‘+hfx=O (2.6) 

i:-hz=o (2.7) 

and the conditions 

x(L)=X(O), X'(L)=X'(O), [Xl, =O, [fX'], =0, [Xl, =O, [fX'l, -KX, =0 (2.8) 

i(0) = 0 (2.9) 

Here h is the eigenvalue (EV) of homogeneous boundary-value problem (2.6), (2.8). We will consider 
the functional (everywhere henceforth integration with respect to x is carried out from 0 to L) 

I(X)= KX,2 +j(f(X’)’ -@Y2)dx 

defined for any bounded piecewise-continuous functionsf, X and x’, to determine the sign of all its 
EVs. We will write the first term of the integrand as the product (fX’)X’ and integrate by parts over 
continuous sections of the functionsfandX’, taking conditions (2.8) and the periodicity of the function 
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f into account. For any eigenfunction (EF) X, which is the solution of boundary-value problem (2.6) 
(2.Q we then obtain that 1(X) = 0. By definitionf = h3 > 0, hence for K > 0 the equality (X) = 0 is 
only possible for positive h, i.e. when 

h, =jl; >O, k=l,2,... (2.10) 

If there is no supply aperture (K = 0), the minimum EV ho = pi = 0. Its corresponding EFX, is a 
constant. In addition, according to (2.7) and (2.9) Z0 = 1, the functionp&) is defined, apart from an 
additive constant, and condition (2.10) holds for k 2 1, as well as for K > 0. 

By virtue of relations (2.9) and (2.10), the solutions Zk = Z,(z) of Eq. (2.8) have the form 

Z, =chu,z (2.11) 

Let X, = X,(x) be the EF, corresponding to the EV hk. The EV of problem (2.6), (2.8) which is also 
self-adjoint (with natural supplementations forx = xd andx = x,), forms a series which increases without 
limit, as in the standard Sturm-Liuville self-adjoint problem [Z], and the corresponding EFs X, are 
orthogonal and can be made orthonormal, i.e. 

j f&J& = b, 

where S,, is the Kronecker delta. In particular, by virtue of (2.12) 

(2.12) 

x0 = (J fcq” * (2.13) 

By conditions (2.8), the completeness of EF is proved in the same way as in [2] for the function 
fwith a continuous first derivative. If the functionfis continuous, it can be shown as in [2] that hk 4 k’ 
as k + 00 and the corresponding EFs become close to the superposition of sin ku and cos ku. This property 
does not apply to discontinuous functionsfand these “integer-valued” periodic functions do not approach 
the EF of problem (2.6), (2.8) even for piecewise-constant f The neglect of this extremely important 
fact should not affect the results obtained in [3] for stepped bearings of finite length (apart from the 
fact that it is erroneously assumed in [3] that &. = -k’ < 0). 

Taking (2.11) into account we obtain 

P, (~7 z) = PK, + C a,& ch CL~Z (2.14) 

Here and below, the summation with respect to the subscript is carried out from k = 1 to k = 00. 
uk > 0 andPi # 0 only when K = 0. 

We substitute expression (2.14) into the first, unsatisfied condition of (2.5) to determine the constant 
plo and the coefficients ak, and by carrying out the well-known procedure, based on (2.12) and (2.13) 
we obtain 

PI0 = -(If(x)dx)-‘If(x)P,(x)dx, K = 0 

ak 
O(k 

=-9 % =-h)po(x)Xk(x)dx, k = 1,2,... 
ChPL,B 

(2.15) 

For a bearing without a supply aperture, the condition B % 1 was not used when obtaining 
solution (2.14) withplo and ak, given by (2.15). When there is an aperture, less restrictive, for 1 < 1. 
inequality B 9 I was used indirectly (at the model level it was used to justify the radial character of the 
flow in it). 

Equations (2.14) and (2.15) contain the EVs and EFs, the determination of which is often a difficult 
problem. We will demonstrate this by two examples. 

We will consider, as the first example, a piecewise-constant clearance with two steps and without a 
supply aperture. In the one-dimensional approximation, journal bearings of this type provide the 
maximum bearing capacity [4-81. Suppose (Fig. 2a)f = 1 when 0 G x -C a and when p < x c 27r, and 
f = F > 1 when c1 c x c p. In this case, according to Eq. (2.6) and the corresponding conditions from 
(2.8), the EFs are obtained as various combinations of sin ukX and cos ukx when 0 G x < a and when 
a C x < 0, and sin uk (x-2n) and cos uk (x-27c) when /3 c x < 2% In this case & are the roots of the 
equation (uk = &u) 
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Fig. 2 

a.b-c-d=0 

a(p) = -a(+) = cospasin p@ - a) + F{ sin pacosp(a - j3) -sin p(j3 - 2x)) 

b(p) = b6p) = sin k(a - @sin p(p - 27~) + F{ cospa - cos p(a - p)cosp@ - 27~)) 

c(p) = c(-j.t) = sin pasin p(a - p> + F( cospa cosp(a + f3) - cosp@ - 27~)) 

d(p) = -d(-p) = sinp@-a)cosp(j3 - 2x)+ F(sinpa-sinp@- 2x)cosp(a-p)) 

The finite number of the roots of this transcendental equation can only be found numerically. In the 
case of arbitrary F > 1 and 0 < 01 < p < 27~ its roots p = pk for any integral are not close to k. 

In the second, simpler, example, for a fixed clearance (f = 1 for 0 G x s 27r) the supply aperture 
(Fig. 2b) is situated in the sectionx = x, = 7~. In this case pa(x) = pe, all EVs hk = pz > 0 and the EFs 
are equal to X,(x) = Ak cos pg when 0 s x < n and to X,(x) = Ak cos p,& - 2x) when n < x s 27r with 
the normalizing factor Ak by virtue of the conditions of periodicity and continuity in the section x = rr. 
The second condition for X, when x = 7[; gives the equation (uk = +) 

sin plc = K(2l.t)-’ cos pn 

that determines the EVs, which, unlike the first example, will be of the order of k2 for large k. The 
pressure distribution in the clearance is written in the form 

taking into account the conditionp(x, B) = pw = 0. 

3. EQUATIONS AND CONDITIONS FOR THE PRESSURE AVERAGED 
OVER THE LENGTH OF THE BEARING 

We will use the results obtained to justify the formulation of the boundary conditions for long (in the 
limit, infinite) bearings, which are freely in contact with the “external space” at the ends. 

If B B 1, we then obtain from relation (2.1) taking (2.14) and (2.15) into account for z > 0 

Chkz 
P(x,z)=pO(x)+PIO+CakXk-~ 

Chl-‘kB 
PO(x) + plo + ~akxke”‘(L-B) 

due to the fact that the uk are positive. 
We will introduce a pressure averaged over the length of the lubricating layer 

(P> = $ -7 p(x, z)dz 
B 

=+[ p(x,zWz 

(3.1) 

(3.2) 

Like po, (p) is a function of x only. The projections of the vector of the carrying capacity N are 
determined by integrating (p) sin x and (p) cos x with respect to x from 0 to L = 27~. Assuming 
p(x, z) = (p) + Ap(x, z), according to (3.2) we obtain 

[APO, z)dz = o (3.3) 
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Averaging Eq. (1.2) over z and taking Eq. (3.3) into account. we obtain 

z+(i) (3.4) 

Analogues of conditions (1.3)-( 1.5) to determine (pj as a function ofx from Eq. (3.4) with zero right- 
hand side are obtained by applying the operation of averaging (3.2) and Eq. (3.3) to relations (1.3)-(1.5). 
The resulting equations and conditions for p”(x) and (p) are identical. This would seem to lead to the 
identity ofp,,(x) and (p). However, when there is a supply aperture (K > 0) the uniqueness of the solution 
(p) would be ensured by the condition (p), = p’, similar to the same condition forp&). In fact, there 
is a fundamental difference betweenp&) and (p) for any arbitrary finite B. Sincep&) is the solution 
of a one-dimensional problem, there is no flow of lubricant caused byp&) in the axial direction, since 
it is independent of z. Consequently the flow of lubricant, caused byp&), in the circumferential direction 
is constant. Its constancy, together with conditions (1.3)-( 1.5) and withpa substituted for&, z) results 
in the equalityp ac = pe. In contrast to this, (p) is the result of averagingp(x, z), and hence, at least for 
finite B, the constancy of the flow of lubricant caused by p&) in the circumferential direction in no 
way follows, and the equality (p), = pe does not follow from conditions (1.3)-(1.5) with (p) substituted 
for&c, z). The second example, which was considered at the end of the previous section, serves as an 
additional illustration of this. 

To obtain the condition which replaces the equality mentioned, we will write the equation of the flow 
of lubricant from the plane of symmetry z = 0 in the direction of the axis of rotation. When there is 
supply aperture we obtain 

dGz 4 (2) __ = ~~~~ mpc), GZ = G’(z) = -~h3(x)P,(x& = -7 
dz 

l,(z) = j h3(x)p(x,z)dr 

Integrating the first equation of (3.5) with respect to z from z = 0 to an arbitrary z < B, when 
G’(O) = 0, we get 

y-&p,(r)-p’)dc=O 
0 

Integrating this equality with respect to z from an arbitrary positive z < B to z = B, where, due to 
the choice of the reference level pressure measurements, p(x, B) = pm - 0, we find 

(3.6j 

This equality is a consequence of the integral law of conservation of the lubricant flow (3.5), formulated 
taking into account the periodic@ of the flow, the symmetry condition for z = 0 and the fact that the 
lubricant pressure is equal to the external (zero) pressure at the ends z = B. When there is no supply 
aperture, i.e. for K = 0, relation (3.6) is equivalent to the total radial lubricant flow (integrated over a 
period) through any section of the lubricant layer 0 G z = const G B being equal to zero. 

We will average condition (3.6) taking into account (3.3) and using the expression for pc obtained 
from (3.1) to integrate it. As a result we obtain 

1, -@ 
3 1 

Pe - Pot - PI0 - 3B2 ~~~xk(x,)+ 
Oc I 

-+ = 0, 12 = jh3(x>(p)dx 

When B % 1, substitution of (3.1) into (3.2) gives (p) = pa(x) + plo + 0(1/B), and for any K 3 0 we 
will have 

I~--KB2@‘-4p),)/3 = 0 (3.7) 

In the limiting cases, when KB2 is much greater or much less than unity, this equality reduces to the 
well-known conditions, which are used for bearings of infinite length. Thus, when there is a supply 
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aperture and for any K as small as desired but non-zero, for a journal bearing of infinite length it can 
be reduced to the equality 

(PA = PC (3.8) 

The same condition is obtained from (3.7) for finite B if KB* + 1, despite the possible smallness of 
K = A’ll. On the contrary, for K = 0 or for K > 0 but KB2 4 1 Eq. (3.7) is replaced by 

I* = 0 (3.9) 

Summarizing all the cases considered for B + 1, we obtain the conditions 

(p), = pc for KB2 9 1; I2 = 0 for KB2 G 1 

12-KB2@‘-(p),)/3 = 0 for KB2 = O(1) 
(3.10) 

Any of these conditions acts as an additional one, which, for B % 1, the pressure (p), determined 
from the solution of the above one-dimensional problem, should satisfy. Earlier [l], in the general case 
of a compressible lubricant, the first equality of (3.10) was postulated as one of the additional conditions 
for a closed journal bearing of infinite length. The second condition of (3.10) is identical with the result 
of the analogous condition obtained for the infinite journal bearing without a supply aperture in the 
case of a compressible barotropic, partly isothermal or polytropic lubricant [l, 9-111. 

Note that the magnitude ofpi” is given by the first relation of (2.15) for K = 0 so that Eq. (3.9) by 
substituting (p) =p&) + pi0 into it, transforms to an identity due to this definition. The latter is natural 
sincepI is determined as a coefficient of the expansion in the eigenfunctionXO = const of the condition 
p(x, B) = 0. If the one-dimensional problem of finding (p) from Eq. (3.6) the conditions of periodicity, 
etc. is initially considered, then the level of measurement of(p), in no way related topm = 0 when solving 
this problem, for K = 0 will be determined by condition (3.9). 

In the case of an incompressible lubricant, (p) is determined, apart from an additive constant, which, 
due to the multiplication of the pressure by sin x and cos x and the integration with respect to x from 
0 to 27r for closed journal bearings, does not affect the magnitude and direction of the bearing capacity 
N, and thus in such cases each of conditions (3.10) can be replaced by specifying an arbitrary initial 
value of p for any x; for example, we can put (p) = 0 for x = 0. Moreover, this arbitrariness enables 
any of the three conditions mentioned to be satisfied. For the same reason the inclusion of the second 
or third of these conditions as an isoperimetric condition to solve the previously considered variational 
problems (4-81 of the profiling of the clearance of a closed journal bearing of infinite length, cannot 
affect the shape of the optimum clearances for an incompressible lubricant. Finally, in view of the above 
considerations, these conditions are also optimal for closed cylindrical journal bearings of finite length 
but long enough (B % 1 and KB2 are arbitrary). 

When considering a slider, x0, y” and z” are fixed (connected to the slider) dimensional Cartesian 
coordinates, where the plane y” = 0 moves with velocity U” in the direction of the x0 axis, and 
y” = Iz”(x”) is the dimensional width of the clearance. If the clearance of such a slider is a periodic function 
x0 with period 2rcR, then all the equations and conditions obtained above will remain unchanged. In 
this case, however, the bearing capacity along they axis, depends on the level of the pressure and hence 
on which of conditions (3.10) determines it. 

4. THE CASE OF DIFFERENT PRESSURES AT THE ENDS 

In the above discussion the pressure was assumed to be the same at both ends. We will consider the 
case when these pressures are different. Taking the half-sum of the pressure levels at the ends as the 
measurement reference level of the pressure p instead of condition (1.6) we will obtain 

-p(x,-B)=p(x,B)=p” ~0, Osxs L (4.1) 

To fix our ideas we will assume that pm > 0. In addition, if there is no supply aperture, the axial flow 
of lubricant in the clearance, which decreases as B increases, is negative. In this most simple case we 
will represent the solution in the form 

P(-G z) = PO(Z) + PO(X) + P, (x,z) (4.2) 
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with the function#(z), which satisfies the equation tf’p”(z)/&” = 0 and boundary conditions (4.1). Taking 
into account that the integral of p’(z) in equality (3.3) for (p) equals zero, obtain that p’(z) = pmz/B, 
and forpo(x),pl(x, z) and (p) practically all the above. conclusion hold. The only difference is the natural 
correction of condition (3.9) which is replaced by 

1, = 0, 13 = jh3W((p) - p”)dr (4.3) 

In the case of a clearance with a supply aperture, when the solution is represented in the form (4.2) 
the functionpO(z) appears in the condition at the aperture, hindering the separation of the variables. 
Hence, forpO(z), preserving the splitting (2.1) ofp(x, z) intopo(x) and pi+, z), and taking into account 
the oddness of boundary condition (4.1), we will replace conditions (2.5) by 

pl(x,B)=-p&)+p”, p,(x,O)=O, 0s xs L (4.4) 

Changing the condition for z = 0 leads to the replacement of the solution (2.11) by Zk = sh pkz for 
the previous determination of uk and X,. Due to this conditions and (4.4) the solution for pl(x, z) 
becomes 

sh pkz 
fl(x?z)=CakXk~? 

sh I@ 
ak =-~f(x>(fO(~)+fm)Xk(x)~ 

Hence, for B % 1, due to the fact that the uk are positive for z > 0 we obtain 

(4.5) 

Taking this into account we obtain 

Using this equality and (4.5) we arrive at the conditions, which are obtained from (3.10) by replacing 
the integral I2 by the integral 13, defined by the second equality of (4.3). These conditions, for different 
pressure levels at the ends of the bearing, play the same role as conditions (3.10). We recall that pm is 
the dimensionless pressure at the end z = B, which is measured from the half-sum of the pressure levels 
at the ends. If these pressure levels are equal, thenp” = 0 and the new conditions reduce to conditions 
(3.10). 

If there are several supply apertures, we will denote the respective parameters by an additional 
subscript i, arranging the numbers i = 1, . . , I 2 2 in order of increasing K;. Then conditions (3.10) and 
the corresponding condition for different pressure levels at the ends of the bearing will continue to 
hold, if the first equalities in them are replaced by 

i Ki(pf-(p)ci)=O when K,B*%l (4.6) 
i=l 

KB2~lbyK1B2~l,KB2 = O( 1) by KiB’ = 0( 1) for i = 1, ., I and the terms outside the integral in 
the last equalities will be replaced by the sum from the left-hand side of Eq. (4.6) multiplied by B2/3. 

The analogue of condition (3.9) for an infinite journal bearing for a compressible (for example, 
isothermal) lubricant is well known [ 1, 9-l l] 

jh3(x)(p; - p”2)dx = 0 

where PO(X) is the solution of the corresponding one-dimensional problem. 

5. CONCLUSION 

Several difficulties arise in attempting a rigorous derivation and justification of the analogues of the 
conditions obtained above for the case of a compressible barotropic lubricant. The determination of a 
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linear equation for-pi@, r), which allows of a separation of variables on the basis of (2.1) is only possible 
by neglectingp:. Similarly, integrals with respect to z from (Ap)*/B have to be neglected in order to 
obtain the equation for (p). Finally, the linear equation for&(x) in this case is considerably more complex 
than condition (2.6), which makes it difficult to prove the non-negativeness of its eigenvalues. If this, 
nevertheless, is possible, then the required analogues can be easily obtained, since in this case the 
solutions Z, = ch pkz and Zk = sh pk.z hold. The latter justifies our neglecting the quadratic terms for 
B %- 1, which are small outside the regions in the immediate vicinity of the ends. The length of such 
regions O(1) 6 B. In extremis the inequality hk > 0 for k > 0 can be considered as the hypothesis. It 
is obvious that even without this factor for ZCB2 B 1 this condition reduces to the first equality of (3.10) 
and for KB2 + 1 it reduces to (4.7) with& replaced by (p)*. Hence, it only remains to consider the case 
KB* = O(1). 
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